DISTRIBUTION OF THE LATTICE ENERGY IN CUBIC CRYSTALS AND ITS VARIATION WITH COMPRESSION OR EXPANSION*

M. DRECHSLER

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany
and

J. F. NICHOLAS

Division of Tribophysics, CSIRO, University of Melbourne, Australia

(Received 22 May 1967)

Abstract-The total lattice energy of face-centred and body-centred cubic crystals has been calculated on the assumption of a pair-wise interaction potential, for a variety of such potentials These were either of Morse or Mie (Lennard-Jones) type, with the parameters adjusted to minimize the total lattice energy for an ideal unstrained crystal at $0^{\circ} \mathrm{K}$. The same potentials were used to compute the variation in lattice energy when the lattice is allowed to expand or contract by up to 2.5 per cent. The relative contributions of different interactions to the total energy are given. Fo interactions, although the contributions of second and higher neighbours are still significant. Fo body-centred cubic crystals, the dominant contribution usually comes from the second neighbour interactions. Some typical variations in these contributions with changes in lattice parameter are given.

1. INTRODUCTION

In this paper, we assume that the total lattice energy (cohesive energy) of a crystal can be calculated as the sum of pair-wise interactions between all atoms. Various forms are considered for tween all atoms. Various forms are considered for the parameters have been adjusted to minimize the lattice energy for an ideal unstrained crystal at $0^{\circ} \mathrm{K}$. The lattice energy is then calculated for body-centred and face-centred cubic crystals, first for a lattice parameter corresponding to this minimum energy and then also for parameter deviating from this value by a few per cent. Such changes in lattice energy may be expected if the crystal is at higher temperatures or under hydrostatic pressure. Clearly any vibrational contribution to the lattice energy is not taken into account in this calculation. Corresponding calculations of

* Work performed during an extended stay of M.D at the Division of Tribophysics.
surface energy are discussed in the following paper. ${ }^{(1)}$

The calculation of energies by summing pairwise interactions has been used previously by many authors, ${ }^{(2,3)}$ despite the recognition that many-body interactions may make a significan contribution to the total energy. ${ }^{(4)}$ The attractions of the method are that it is mathematically tractable and that it does appear to provide a good approximation in many cases. The pair-wise potential itself can be chosen either as a "real potential derived from quantum-mechanical cal culations or as a "fictitious" potential ${ }^{(2)}$ of simple mathematical form and containing one or more adjustable parameters. The second approach is more in keeping with the philosophy of the method and may be expected to give a better approximation when the parameters are chosen to fit some specific experimental data.
As discussed in detail in Section 2, we have re As discussed in detailed our calculations to Morse and Mie
(Lennard-Jones) potentials without any truncation of the potential. Truncation, which corresponds to considering only, say, the first three or four shells of neighbours, involves an extra assumption that is unnecessary when high-speed computers are available and highly undesirable when more than available and highly one crystal structure is being considered for the same potential. Thus our calculations give precise results for ideal crystals interacting with potentials of the precise form given in equations (2) or (3).

We considered using also oscillatory potentials such as have been discussed recently, ${ }^{(5-8)}$ but did not pursue this investigation for the following reasons:
(i) The only explicit potentials available are those of Johnson, Hutchinson and March, ${ }^{(7)}$ and since these involve a number of parameters derived specifically for each metal, generalizations become very difficult.
(ii) In some associated calculations on surface energy, ${ }^{(9)}$ out of the seven potentials available for cubic metals, one was divergent, one gave negative values of surface energy and a third gave a degree of anisotropy of more than 3 , which is very much greater than that found by any other calculation or experiment.

2. METHOD OF CALCULATION

If the interaction energy of two atoms at a distance, r, is given by $E(r)$, then, for a perfect infinite crystal, the total lattice energy per atom is given by

$$
\begin{equation*}
E_{G}=\frac{1}{2} \sum_{i} M_{i} E\left(r_{i}\right) \tag{1}
\end{equation*}
$$

where r_{i} is an interatomic distance, M_{f} is the number of neighbours of a given atom at this distance, and the sum extends over all possible r_{i}. The method of calculation is therefore simply to list for each structure the possible values of r_{i} and their associated multiplicities M_{i}, and then evaluate the lattice sum for particular potential functions $E(r)$. This corresponds to rewriting equation (1) in the form

$$
\begin{equation*}
E_{G}=\sum_{i} E_{i}^{S} \tag{2}
\end{equation*}
$$

where

$$
E_{i} S=\frac{1}{2} M_{i} E\left(r_{i}\right)
$$

represents the contribution to the lattice energ from the i-th shell of neighbours
The potentials considered were either Morse potentials of the form

$$
E(r) / E_{0}=\left[1-\exp \left\{-a\left(r-r_{0}\right) / r_{0}\right\}\right]^{2}-1
$$

or Mie (Lennard-Jones) potentials of the form

$$
E(r) / E_{0}=\left\{n\left(r_{0} / r\right)^{m}-m\left(r_{0} / r\right)^{n}\right\} /(m-n)
$$

where, in all potentials, E_{0} corresponds to the maximum interaction energy which occurs at a separation r_{0}.
Calculations were made for various values of the Morse constant a between 3 and 6, while for the Mie functions the attractive exponent m varied from 4.5 to 9 and the repulsive exponent n (always greater than m) ranged from 6 to 14 . The scaling factors E_{0} were left arbitrary since only relative energy values are considered but the \boldsymbol{r}_{0} values were adjusted, as described below, to produce a minimum E_{G} for given a or (m, n). Figure 1 shows some Morse functions, while some typical Mie functions are plotted in the following paper (1) in comparison with a Morse function paper (1) in
with

All summations with Morse potentials were carried through for the first 300 different values of \boldsymbol{r}_{i}, i.e. for the first 300 shells of neighbours. This corresponds to considering all interactions out to 17-18 times r_{1}, and ensured that all energy values were correct to at least 8 significant figures. For Mie potentials, the initial summations were carried through for 500 shells of neighbours and the effects of more distant interactions taken into account by means of an integral approximation so that the overall accuracy should be comparable to that for the Morse potentials.
(a) Relation between the lattice parameter and r_{0}

From equations (4) and (5) it can be seen that distances enter only through the dimensionless variable $\left(r / r_{0}\right)$, while distances in the crystal are available in the available nearest-neighbour distance, r_{1}. Thus, in order to
calculate the sums, the ratio r_{1} / r_{0} must be specified calculate the sums, the
so that we can write

$$
\begin{equation*}
\boldsymbol{r} / r_{0}=\left(r / r_{1}\right) \cdot\left(r_{1} / r_{0}\right) \tag{6}
\end{equation*}
$$

Then, for the interatomic distances r_{i}, the ratios (3) $b_{i}=r_{i} / r_{1}$ are fixed and known for a particular

Fig. 1. Morse functions for various values of the Morse constant a.
lattice, e.g. for the body-centred cubic lattice, $b_{1}=1, b_{2}=2 / \sqrt{ } 3, b_{3}=\sqrt{ }(8 / 3)$, etc., and r / r_{0} is now determinate.
In this notation, the lattice energy with a Mie potential is
$E_{G}=\frac{E_{0}}{2}\left\{n\left(r_{0} / r_{1}\right)^{m} S(m)-m\left(r_{0} / r_{1}\right)^{n} S(n)\right\} /(m-n)$,
where

$$
\begin{equation*}
S(j)=\sum_{i} M_{i} b_{i}{ }^{-j} \tag{8}
\end{equation*}
$$

Then, minimum E_{G} is easily shown to occur for $r_{1}=r_{1}{ }^{*}$, where

$$
\left(r_{0} / r_{1}{ }^{*}\right)=\{S(m) / S(n)\}^{1 /(n-m)}
$$

(9)

The lattice sums $S(j)$ have been calculated by Jones and Ingham ${ }^{(10)}$ for all integral j from 4 to 30 and appear in their Table 1 as B_{j} for the bodycentred cubic and C_{j} for the face-centred cubic lattice. Since we wished to use some half-integral exponents we have recalculated $S(j)$ for all integral and half-integral values from 3.5 to 20 . Values of $\left(r_{0} / r_{1}^{*}\right)$ are given in Table 1 for various values of (m, n).
For the Morse potentials, a similar procedure can be followed but $\left(r_{0} / r_{1}{ }^{*}\right)$ cannot be evaluated in terms of simple lattice sums and a numerical minimization procedure is necessary. The values of
$\left(r_{0} / r_{1}{ }^{*}\right)$ appropriate to various Morse constants a are also given in Table 1.
It may be noted here that Girifalco and WEIZER ${ }^{(3)}$ have considered a range of materials and used experimental values of sublimation energy lattice parameter, and compressibility to deduce the values of E_{0}, a, and r_{0} appropriate to each. Table 2 lists these as some of our calculations have been carried through with them. Although they express the Morse potential in a different form their values correspond to the same minimization criterion that we have used. Other workers have used a similar approach to deduce the (m, n) values of Mie potentials appropriate to different materials. ${ }^{(2)}$ Some discussion of this appears in Section 4(b) of the following paper. ${ }^{(1)}$
(b) Variation of the lattice parameter

In studying the effect of temperature or pres sure on the lattice energy, we assume that the nearest-neighbour distance in a perfect unstrained crystal at $0^{\circ} \mathrm{K}$ is r_{1}^{*} and that the only effect of temperature or pressure is to vary the r_{1} by a few per cent from this value. The sums such as thos in equation (5) can then be evaluated to show the variation in lattice energy with lattice parameter. This has been carried out for $r_{1} / r_{1} *$ deviating from unity by up to ± 2.5 per cent for the Mie potentials and up to ± 5 per cent for the Morse potentials.
In order that the variation in E_{G}, expressed here in terms of a variation in lattice parameter, can be

Table 1. Ratio of the nearest-neighbour distance, $r_{1}{ }^{*}$, for minimum lattice energy to the distance of the minimum in the potential function, r_{0}. For ratios of lattice parameter to r_{0}, the values given must be multiplied by $\sqrt{ } 2$ for face-centred cubic and $2 / \sqrt{ } 3$ for body-centred cubic crystals

Face-centred cubic							
$\begin{gathered} \text { Morse } a \\ r_{1}{ }^{*} / r_{0} \end{gathered}$	$=$	$\begin{aligned} & 3 \\ & 0.6346 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 0.8266 \end{aligned}$	${ }_{0}^{4} \cdot 9014$	$\begin{aligned} & 4.5 \\ & 0.9395 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.9612 \end{aligned}$	$\begin{aligned} & 6 \\ & 0.9825 \end{aligned}$
Mie m	$=$	4.5	5	6	7	8	9
$n=6$		0.8140	0.8519				
7		0.8564	0.8873	0.9243			
8		0.8844	0.9104	0.9411	0.9583		
10		0.9182	0.9379	0.9607	0.9731	0.9806	0.9855
12		0.9375		0.9712	0.9809	0.9866	0.9903
14		0.9497	0.9628	0.9776	$0 \cdot 9855$	0.9901	0.9930

Body-centred cubic						
Morse a $\boldsymbol{r}_{1}{ }^{*} / r_{0}$	$=$	3	3.5	4	4.5	5
Mie m	$=$	0.6167	0.8035	0.8767	0.9147	0.9367
$n=$	5	6	7	8	0.9601	
n		0.7932	0.8303			9
7	0.8351	0.8655	0.9021			
8	0.8629	0.886	0.9193	0.9368		
10	0.8974	0.9169	0.9399	0.9529	0.9611	0.9666
12	0.9178	0.9335	0.9519	0.9621	0.9686	0.9730
14	0.9312	0.9444	0.9597	0.9682	0.9736	0.9772

Table 3. Temperatures and pressure necessary to change lattice parameters by particular amounts ${ }^{(11,12)}$

	Temperature ($\left.{ }^{\circ} \mathrm{K}\right)$ at which the lattice parameter exceeds $0^{\circ} \mathrm{K}$ value by	Pressure $\left(10^{3} \mathrm{~kg} / \mathrm{cm}^{2}\right)$ which changes the lattice parameter at room temperature by			
	1 per cent	2 per cent	-0.5 per cent	-1 per cent	-2 per cent
	180	350	$1 \cdot 0$	$2 \cdot 0$	$4 \cdot 2$
Na	450	800	11.5	25	27
Al	650	1250	23.5	53	~ 200
Cu	1950	3250	70	-	-
W					

considered in terms of temperature or pressure, expected for 1 per cent and 2 per cent change in Table 3 gives the relevant experimental few metals. parameter.
Since E_{G} has been minimized at $r_{1}{ }^{*}$, the changes
3. RESULTS in the total lattice energy are all small but much greater changes occur in the energies associated
with the interactions of particular atoms or groups Table 4 shows the calculated lattice energy for with the interactions of particular atoms or groups
various potentials together with the variations of atoms. Thus, Fig. 2 shows, for a Morse $a=4$

DISTRIBUTION OF THE LATTICE ENERGY IN CUBIC CRYSTALS

M. DRECHSLER and J. F. NICHOLAS

$\mathrm{r} / \mathrm{r}_{0}$
Fig. 2. Interaction energy (full line) between, and force Fig. 2. Interaction energy (full line) between, and force
exerted on (broken line) first to fourth nearest neighbours in a body-centred cubic crystal with a Morse $a=4$ potential. The changes caused by a 2 per cent lattice expansion or contraction are also shown.
Table 4. Lattice energies, E_{G} for different potentials and the differences caused by small variations of the lattice parameter from its value for minimum E_{G}. Since E_{G} is itself negative, the quoted increases are in fact decreases in the absolute value of E_{G}

Potential	$-E_{G} / E_{0}$		Per cent increase in E_{σ} for lattice xpansion of contraction of			
			1 per cent	2 per cent	1 per cent	2 per cent
Morse: $a=$						
3	22.802	22.806	0.04	$0 \cdot 17$	0.05	$0 \cdot 19$
$3 \cdot 25$	15.895	$15 \cdot 881$	$0 \cdot 07$	$0 \cdot 27$	0.07	$0 \cdot 30$
3.5	12.819	12.788	$0 \cdot 09$	0.35	$0 \cdot 10$	$0 \cdot 40$
3.75	11.049	11.000	$0 \cdot 11$	0.44	$0 \cdot 12$	$0 \cdot 50$
4	$9 \cdot 900$	9.830	$0 \cdot 13$	$0 \cdot 52$	$0 \cdot 15$	$0 \cdot 60$
$4 \cdot 25$	9.097	9.007	$0 \cdot 16$	$0 \cdot 60$	$0 \cdot 17$	0.71
$4 \cdot 5$	8.509	8.397	$0 \cdot 18$	$0 \cdot 69$	$0 \cdot 20$	0.82
4.75	8.064	7.927	$0 \cdot 20$	0.78	0.22	0.93
5	7.718	7.555	$0 \cdot 23$	0.87	0.25	1.05
$5 \cdot 25$	$7 \cdot 443$	7.253	$0 \cdot 25$	0.96	0.28	$1 \cdot 18$
$5 \cdot 5$	7.222	7.003	$0 \cdot 28$	1.06	0.31	$1 \cdot 31$
$5 \cdot 75$	7.041	6.793	$0 \cdot 31$	1.15	$0 \cdot 34$	$1 \cdot 45$
6	6.892	$6 \cdot 612$	0.33	$1 \cdot 26$	$0 \cdot 38$	1.59
Mie: $(m, n)=$						
$(4 \cdot 5,6)$	24.840	24.609	$0 \cdot 13$	$0 \cdot 49$	0.14	0.59
$(4 \cdot 5,14)$	12.410	11.951	$0 \cdot 29$	1.10	0.34	1.46
$(5,7)$ $(5,8)$	15.423 13.567	15.198 13.319	0.17 0.19	0.63 0.72	0.18 0.21	0.77 0.89
$(6,12)$	$8 \cdot 610$	$8 \cdot 237$	$0 \cdot 34$	1.26	$0 \cdot 39$	$1 \cdot 66$
$(9,14)$	$6 \cdot 656$	6.089	$0 \cdot 58$	$2 \cdot 13$	$0 \cdot 69$	3.01

distribution of the lattice energy in cubic crystals
potential in a body-centred cubic crystal, how the energies of interaction between first to fourth nearest-neighbours are related for $r_{1} / r_{1}{ }^{*}=0.98$, $1 \cdot 0$, and $1 \cdot 02$. The derivative of this energy, which gives the force on one atom exerted by the appropriate neighbours, is also plotted here. More details of these energies are given in Fig. 3 for a variety of Morse constants, while Fig. 4 shows the variation with parameter of $E\left(r_{1}\right) / E\left(r_{2}\right)$. Figure 5 shows $E_{i}^{S}(i=1, \ldots, 4)$ as functions of the parameter for two different Morse constants.

4. DISCUSSION OF THE RESULTS

Although the variation of E_{G} with lattice parameter, as shown in Table 4 , is in fact small, the following generalizations are of interest.
(i) The fractional change in E_{G} for a given change in parameter and given potential is effectively the same for each structure. This can be shown to be rigorously true for Mie functions and the maximum variation for Morse functions is 0.003 per cent, at $a=6$.
(ii) As is to be expected from the asymmetry of the potential functions, the changes for compression exceed those for expansion.
(iii) For potentials producing comparable values of E_{G}, the Mie potentials give a greater variation with parameter than do the Morse potentials.
For particular interactions, it is clear on physical grounds that minimizing the lattice energy must lead to an $r_{1}{ }^{*}$ less than r_{0}, i.e. to a repulsive force between nearest-neighbours in the unstrained crystal. Any compression obviously increases this repulsion while Table 1 shows that, after 2 per cent expansion, the force is still repulsive on this model for most potentials, the exceptions being model for most potentials, the ex
those few which $r_{1}{ }^{*} r_{0}>0.98$.
For second-neighbour interactions, whose significance has been discussed in some detail by Drechsler and Liepack, ${ }^{(13)}$ the force will be attractive so long as
$r_{1} / r_{0}>1 / b_{2}=\left\{\begin{array}{c}0.7071 \text { for face-centred cubic } \\ \text { crystals, } \\ 0.8660 \text { for body-centred cubic } \\ \text { crystals. }\end{array}\right.$
For face-centred cubic crystals, Table 1 shows that this limit is attained only for Morse potentials
with $a \lesssim 3 \cdot 1$. Thus even for quite large compressions, second-neighbour interactions should remain attractive. In terms of energy contributions, Fig. 4(a) shows that a nearest-neighbour interaction exceeds that of a second neighbour for $a>3.8$ and this effect is reinforced in the contributions to lattice energy since $M_{1} / M_{2}=2$ [see Fig. 5(a)]. For Mie potentials, calculations show that $E\left(r_{1}\right) / E\left(r_{2}\right)>1$ whenever $2 m+n>17$ and that $E_{1}{ }^{s} / E_{2}{ }^{s}>1$ whenever $2 m+n>16$.
In body-centred cubic crystals, a very different situation prevails. Table 1 shows that for Morse potentials with $a<4$, the second-neighbour interactions will be repulsive and this is also true for some of the Mie potentials. Since third neighbours become repulsive only for $r_{1} / r_{0}<1 / b_{3}=0.6124$, interactions from these and further neighbours should be attractive. In terms of energy, calculations of $E\left(r_{i}\right)$ for $i=1, \ldots$, 5 show that, with potentials appropriate to ideal crystals, the largest energy is associated with the nearest-neighbour interaction for $a>5.1$ or $3 m+n>29$, with the second-neighbour interaction for $5 \cdot 1>a>3.3$ or $3 m+n<29$, and with the third neighbour interaction for $a<3 \cdot 3$. The limit of 3.3 is insensitive to changes in parameter but, as can be seen from Fig. 4(b), the limit at $5 \cdot 1$ is sensitive to such changes, decreasing to about 4.6 for 2.5 per cent lattice expansion. In summary, it appears that for most potentials and most parameter values, the largest energy is in fact associated with a second-neighbour interaction. This of course follows also from Table 1 since r_{1} / r_{0} near 0.87 implies that the second neighbours are separated by about r_{0}, where the interaction energy approaches its maximum value of E_{0}. For body-centred cubic crystals, the region with $a<3.5$ which may be appropriate for the alkali metals (Table 2) shows a further interesting feature. For these relatively flat potentials (see Fig. 1), the nearest-neighbour interaction becomes of opposite sign to the other interactions [Fig. 4(b)] and may be of considerable magnitude. At this stage, as pointed out above, the effect of third neighbours is very significant, particularly in contributions to total lattice energy since $M_{1}: M_{2}: M_{3}=8: 6: 12$.
The considerations above point out the considerable errors which can be introduced by a theory based on nearest-neighbour interactions

Fig. 3a

Fig. 3b
Fig. 3. Interaction energy as a function of lattice parameter for various neighbours interacting with Morse potential of (a) $a=4$ and $5 \cdot 5$, in a face-centred cubic
crystal, and (b) $a=3 \cdot 5,4$, and 5 , in a body-centred cubic crystal. The broken lines show a fraction of the total lattice energy.

Fig. 4 a

Fig. 4. Variation with lattice parameter of $E\left(r_{2}\right) / E\left(r_{r}\right)$ for various Morse potentials in (a) a face-centred cubic crystal and (b) a body-centred cubic crystal.
M. DRECHSLER and J. F. NICHOLAS

> Fig. 5b

Fig. 5. Variations with lattice parameter of various contributions to E_{G} in (a) a face-centred cubic crystal for a Morse potential of $a=3.89$ and (b) a body-centred cubic crystal for a Morse potential of $a=4 \cdot 28$; according to (3) these values are appropriate to Cu and W . The number of atoms in each shell of neighbours is given in
only, particularly for body-centred cubic crystals. One direct example of this has been pointed out by Drechsler and Liepack ${ }^{(13)}$ in connection with the growth of a (110) face in a body-centred cubic crystal. Here, a single adatom on top of such a face could locate itself on a site with three nearestneighbours but instead, since growth occurs on such faces, must be located on a site with two nearest and two second-nearest neighbours. This is consistent with detailed calculations with pairwise potentials which show that the latter site has a lower energy.
An interesting demonstration of the effects of distant neighbours has been produced by constructing ball-and-spring models of body-centred and face-centred cubic crystals (14) body-centred models of this type use springs only between models of this type use springs only between nearest neighbours and since these are made strained crystal. However, the new models use trained eryta. However, the new models use springs between atoms up to third-neighbour separation with spring constants adjusted to fit particular interaction potentials. In these, of course, the nearest-neighbour springs are always in compression and the model gives notably different results from the conventional one when used to study the stability of structures, their elastic properties or the positions of surface atoms relative to their ideal lattice positions.

Acknowzledgements-The hospitality offered to M.D. by the Division of Tribophysics and the generous study leave granted by the Fritz-Haber-Institut are gratefully Professor R. Brill for making this co-operation possible.

References

1. Drechsler M. and Nicholas J. F., J. Phys. Chem. Solids 28, 2609 (1967).
2. Fürth R., Proc. R. Soc. A183, 87 (1945)
3. Girifalco L. A. and Weizer V. G., Phys. Rev. 114, 687 (1959)
4. For example, Born M. and Huang K., Dynamical Theory of Crystal Lattices, University Press, Oxford (1954).
5. Friedel J., J. Phys. Radium, Paris 23, 501 (1962),
6. Johnson M. D. and March N. H., Phys. Lett.
7. Johnson M. D., Hutchisson P. and March N. H Proc. R. Soc. A282, 283 (1964)
8. Worster J. and March N. H., Solid State Commun. 2, 245 (1964).
9. NichoLas J. F., Australian J. Phys. 20, (1967)
10. Jones J. E. and Ingham A. E., Proc. R. Soc. A107,
11. Landolt-Bör
aus Physik, Chemie, Vol IV Sningnkionen (1963-64).
12. Bridgman P. W., The Physics of High Pressure, Bell, London (1952).
13. Drechsler M. and Liepack H., Colloque Internat. 4. Drechsire M. No. 152, p. 49, Paris (1965.)
