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Abstract-The total lattice energy of face-centred and body-centred cubic crystals has been cal
culated on the assumption of a pair-wise interaction potential, for a variety of such potentials. 
These were either of Morse or Mie (Lennard-Jones) type, with the parameters adjusted to minimize 
the total lattice energy for an ideal unstrained crystal at OaK. The same potentials were used to 
compute the variation in lattice energy when the lattice is allowed to expand or contract by up to 
2·5 per cent. The relative contributions of different interactions to the total energy are given. For 
face-centred cubic crystals, most potentials predict a major contribution from nearest-neighbour 
interactions, although the contributions of second and higher neighbours are still significant. For 
body-centred cubic crystals, the dominant contribution usually comes from the second neighbour 
interactions. Some typical variations in these contributions with changes in lattice parameter are 
given. 

1. INTRODUCTION 

IN THIS paper, we assume that the total lattice 
energy (cohesive energy) of a crystal can be cal
culated as the sum of pair-wise interactions be
tween all atoms. Various forms are considered for 
the interaction potential function, in all of which 
the parameters have been adjusted to minimize the 
lattice energy for an ideal un strained crystal at 
OaK. The 1att1ee energy is then calculated for 
body-centred and face-centred cubic crystals, first 
for a lattice parameter corresponding to this 
minimum energy and then also for parameters 
deviating from this value by a few per cent. Such 
changes in lattice energy may be expected if the 
crystal is at higher temperatures or under hydro
static pressure. Clearly any vibrational contribu
tion to the lattice energy is not taken into account 
in this calculation. Corresponding calculations of 

• Work performed during an extended stay of M.D. 
at the Division of Tribophysics. 

surface energy are discussed in the following 
paper.(l) 

The calculation of energies by summing pair
wise interactions has been used previously by 
many authors,(2.3) despite the recognition that 
many-body interactions may make a significant 
contribution to the total energy.(4) The attractions 
of the method are that it is mathematically tract
able and that it does appear to provide a good 
approximation in many cases. The pair-wise 
potential itself can be chosen either as a "real" 
potential derived from quantum-mechanical cal
culations or as a "fictitious" potential(2) of simple 
mathematical form and containing one or more 
adjustable parameters. The second approach is 
more in keeping with the philosophy of the method 
and may be expected to give a better approximation 
when the parameters are chosen to fit some specific 
experimental data. 

As discussed in detail in Section 2, we have re
stricted our calculations to Morse and l\lie 
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(Lennard- J ones) potentials without any truncation 
of the potential. Truncation, which corresponds to 
considering only, say, the first three or four shells 
of neighbours, involves an extra assumption that 
is unnecessary when high-speed computers are 
available and highly undesirable when more than 
one crystal structure is being considered for the 
same potential. Thus our calculations give precise 
results for ideal crystals interacting with potentials 
of the precise form given in equations (2) or (3). 

We considered using also oscillatory potentials 
such as have been discussed recently, (5 - 8) but did 
not pursue this investigation for the following 
reasons: 

(i) The only explicit potentials available are 
those of JOHNSON, HUTCHINSON and MARCH,(7) 
and since these involve a number of parameters 
derived specifically for each metal, generalizations 
become very difficult. 

(ii) In some associated calculations on surface 
energy, (9) out of the seven potentials available for 
cubic metals, one was divergent, one gave negative 
values of surface energy and a third gave a degree of 
anisotropy of more than 3, which is very much 
greater than that found by any other calculation or 
experiment. 

2. METHOD OF CALCULATION 
If the interaction energy of two atoms at a dis

tance, T, is given by E(T), then, for a perfect infinite 
crystal, the total lattice energy per atom is given by 

(1) 

where TI is an interatomic distance, 1111 is the 
number of neighbours of a given atom at this 
distance, and the sum extends over all possible TI• 

The method of calculation is therefore simply to 
list for each structure the possible values of r l and 
their associated multiplicities M i , and then 
evaluate the latt ice sum for particular potential 
functions E(r). This corresponds to rewriting 
equation (1) in the form 

(2) 

where 

(3) 

. represents the contribution to the lattice energy 
from the i-th shell of neighbours. 

The potentials considered were either Morse 
potentials of the form 

E(r)JEo = [l-exp{ -a(r-ro)Jro}]2-1, (4) 

or Mie (Lennard-Jones) potentials of the form 

E(r)JE 0= {ll(roJr)m-m(roJr)n}/(m-n), (5) 

where, in all potentials, Eo corresponds to the 
maximum interaction energy which occurs at a 
separation To' 

Calculations were made for various values of the 
Morse constant a between 3 and 6, while for the 
Mie functions the attractive exponent m varied 
from 4·5 to 9 and the repulsive exponent 1Z 

(always greater than m) ranged from 6 to 14. The 
scaling factors Eo were left arbitrary since only 
relative energy values are considered but the TO 
values were adjusted, as described below, to 
produce a minimum Ea for given a or (m, n). 
Figure 1 shows some Morse functions, while some 
typical Mie functions are plotted in the following 
paper (1) in comparison with a Morse function 
with a = 4. 

All summations with Morse potentials were 
carried through for the first 300 different values of 
TI, i.e. for the first 300 shells of neighbours. This 
corresponds to considering all interactions out to 
17-18 times T1 , and ensured that all energy values 
were correct to at least 8 significant figures. For 
Mie potentials, the initial summations were carried 
through for 500 shells of neighbours and the 
effects of more distant interactions taken into 
account by means of an integral approximation so 
that the overall accuracy should be comparable to 
that for the Morse potentials. 

(a) Relation between the lattice parameter and ro 
From equations (4) and (5) it can be seen that 

distances enter only through the dimensionless 
variable (T/ro), while distances in the crystal are 
available in terms of the lattice parameter or of the 
nearest-neighbour distance, T1' Thus, in order to 
calculate the sums, the ratio T1/rO must be specified 
so that we can write 

(6) 

Then, for the interatomic distances r l , the ratios 
bl = rdr1 are fixed and known for a particular 
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FIG. 1. Morse functions for various values of the Morse constant a. 

lattice, e.g. for the body-centred cubic lattice, 
b1 = 1, b2 = 2/y'3, b3 = y'(8/3), etc., and T/ro is 
now determinate. 

In this notation, the lattice energy with a Mie 
potential is 

(8) 

Then, minimum Ea is easily shown to occur for 
T1 = T1*' where 

(rO/r1*) = {S(m)!S(ll)F/(n-m). (9) .. -
The lattice sums S(j) have been -ealculated by 
JONES and INGHAM(10) for all integralj from 4 to 30 
and appear in their Table 1 as Bf for the body
centred cubic and Cf for the face-centred cubic 
lattice. Since we wished to use some half-integral 
exponents we have recalculated S(j) for all integral 
and half-integral values from 3·5 to 20. Values of 
(TO/T1*) are given in Table 1 for various values of 
(m, 1Z). 

For the Morse potentials, a similar procedure 
can be followed but (TO/T1 *) cannot be evaluated 
in terms of simple lattice sums and a numerical 
minimization procedure is necessary. The values of 

(TO/r 1*) appropriate to various Morse constants a 
are also given in Table 1. 

It may be noted here that GIRIFALCO and 
WEIZER(3) have considered a range of materials and 
used experimental values of sublimation energy, 
lattice parameter, and compressibility to deduce 
the values of Eo, a, and TO appropriate to each. 
Table 2 lists these as some of our calculations have 
been carried through with them. Although they 
express the Morse potential in a different form 
their values correspond to the same minimization 
criterion that we have used. Other workers have 
used a similar approach to deduce the (m, n) values 
of Mie potentials appropriate to different 
materials.(2) Some discussion of this appears 111 

Section 4(b) of the following paper.(l) 

(l?) Variation of the lattice parameter 
'In studying the effect of temperature or pres

sure on the lattice energy, we assume that the 
nearest-neighbour distance in a perfect unstrained 
crystal at OOK is r 1 * and that the only effect of 
temperature or pressure is to vary the T1 by a few 
per cent from this value. The sums such as those 
in equation (5) can then be evaluated to show the 
variation in lattice energy with lattice parameter. 
This has been carried out for r1/r1 * deviating from 
unity by up to ± 2·5 per cent for the Mie potentials 
and up to ± 5 per cent for the Morse potentials. 

In order that the variation in Ea, expressed here 
in terms of a variation in lattice parameter, can be 
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Table 1. Ratio of the 1learesi-1leiglzbollr distance, r1 *, for lIlillilllU11l lattice mergy to the distance 
of the minimum in the potential fultction, rD. For ralios of lattice parameter to ro, the values given 

11lust be multiplied by y2 for facc-cclllred cubic alld 2/y3 for body-cmtred cubic crystals 

Mic7n 

n = 6 
7 
8 

10 
12 
14 

Mie 711 

n = 6 
7 
8 

10 
12 
14 

3 
0·6346 

4'5 

0'8140 
0 ·8564 
0·8844 
0·9182 
0·9375 
0·9497 

3 
0'6167 

4'5 

0·7932 
0·8351 
0'8629 
0·8974 
0·9178 
0·9312 

Face-centred eubic 

3'5 
0·8266 

5 

0·8519 
0·8873 
0 ·9104 
0·9379 
0·9532 
0·9628 

4 
0·9014 

6 

0·9243 
0·9411 
0·9607 
0·9712 
0 ·9776 

Body-ccntred cubic 

3·5 
0·8035 

5 

0·8303 
0·8655 
0 ·8886 
0·9169 
0'9335 
0·9444 

4 
0·8767 

6 

0·9021 
0 ·9193 
0·9399 
0·9519 
0·9597 

4'5 
0·9395 

7 

0·9583 
0·9731 
0'9809 
0·9855 

4·5 
0·9147 

7 

0·9368 
0·9529 
0 ·9621 
0·9682 

5 
0·9612 

8 

0·9806 
0·9866 
0·9901 

5 
0·9367 

8 

0'9611 
0·9686 
0·9736 

6 
0·9825 

9 

0·9855 
0 ·9903 
0·9930 

6 
0·9601 

9 

0'9666 
0·9730 
0·9772 

Table 3. Temperatllres and pressure 1Iecessary to change lattice parameters by particlllar 
amolmts(1l·12) 

Material 

Na 
AI 
Cu 
W 

Temperature CCK) at which 
the lattice parameter exceeds 

OaK value by 

1 per cent 
180 

. 450 
650 

1950 

2 per cent 
350 
800 

1250 
3250 

Pressure (103 kg/cm2 ) which changes 
the lattice parameter at room 

temperature by 

-0,5 pcr cent 
1·0 

11-5 
23·5 
70 

-1 per cent 
2·0 

25 
53 

-2 per cent 
4·2 

57 
---200 

considered in terms of temperature or pressure, 
Table 3 gives the relevant experimental data for a 
few metals. 

expected for 1 per cent and 2 per cent change in 
parameter. 

Since EG has been minimized at r1*' the changes 
in the total lattice energy are all small but mueh 
greater changes occur in the energies associated 
with the interactions of particular atoms or groups 
of atoms. Thus, Fig. 2 shows, for a Morse a = 4-

3. RESULTS 

Table 4- shows the calculated lattice energy for 
various potentials together with the variations 
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FIG. 2. Interaction energy (full line) between, and force 
exerted on (broken line) first to fourth nearest neighbours 
in a body-ceritred cubic crystal with a Morse a = 4 
potential. The changes caused by a 2 per cent lattice 

expansion or contraction are also shown. 

Table 4. Lattice energies, EG for differe1lt potentials alld the differences caused by small variati01ls 
of the lattice parameter f1"Ont its value for minimum E G• Since EG is itself negative, the quoted 

increases are in fact decreases in the absolute value of EG 

Per cent increase in Eo for lattice 
-Eo/Eo expansion of contraction of 

Potential f.c.c. b.c.c. 1 per cent 2 per cent 1 per cent 2 per cent 

Morse: a = 
3 22·802 22·806 0·04 0·17 0·05 0·19 
3·25 15·895 15·881 0·07 0·27 0·07 0·30 
3·5 12 ·819 12·788 0·09 0·35 0·10 0·40 
3·75 1 t ·049 11·000 0·11 0·44 0·12 0 ·50 
4 9·900 9·830 0·13 0 ·52 0·15 0·60 
4·25 9·097 9·007 0·16 0·60 0·17 0·71 
4·5 8·509 8·397 0·18 0·69 0·20 0·82 
4 ·75 8·064 7·927 0'20 0'78 0'22 0·93 
5 7·718 7·555 0·23 0·87 0·25 1·05 
5·25 7·443 7·253 0·25 0·96 0·28 1·18 
5·5 7·222 7·003 0·28 1·06 0·31 1'31 
5·75 7·041 6·793 0·31 1-15 0·34 1·45 
6 6·892 6·612 0·33 1·26 0·38 1·59 

Mie: (m, 1/) = 
0·59 (4'5,6) 24·840 24·609 0·13 0·49 0·14 

(4'5,14) 12·410 11·951 0·29 HO 0·34 1·46 
(5,7) 15'423 15·198 0·17 0·63 0·18 0'77 
(5,8) 13 ·567 13·319 0·19 0·72 0·21 0·89 
(6, 12) 8'610 8·237 0·34 1·26 0·39 1·66 
(9, 14) 6·656 6·089 0·58 2-13 0·69 3·01 
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potential in a body-centred cubic crystal~' how the 
energies of interaction between first to fourth 
nearest-neighbours are related for rl/rl * = 0·.98, 
1·0, and 1·02. The derivative of this encrgy, which 
gives the force on one atom exerted by the 'appro
priate neighbours, is also plotted here. More 
details of these energies are given in Fig. 3 for a 
variety of Morse constants, while Fig. 4 shows the 
variation with parameter of E(rl )/E(r2 ). Figure 5 
shows E/ (i = 1, ... , 4) as - functions of the 
parameter for two different Morse constants. 

with a :s 3·1. Thus eve'n for quite large com
pressions, second-neighbour interactions should 
remain attractivc. In terms of encrgy contributions, 
Fig. 4(a) shows that a nearest-neighbour interac
tion exceeds ' that of a second neighbour for 
a > 3·8 and this effect 'is reinforced in the con
tributions to lattice energy since M l /M2 = 2 [see 
Fig. 5(a)]. For Mie potentials, calculations show 
that E(rl )/E(r2) > 1 whenever 2m+1I > 17 and 
that El s/E2s > 1 whenever 2m+n > 16. 

-"In body-centred cubic crystals, a very different 
situation prevails. Table 1 shows that for Morse 
potentials with a < 4, the second-neighbour 

4. DISCUSSION OF THE RESULTS .. i"nteractions will be repulsive and this is also 
Although the variation of EG with lattice para- true for some of the Mie potentials. Since 

meter, as shown in Table 4, is in fact smail, the third neighbours become repulsive only for 
following generalizations are of intcrest. Tl/rO < 1/b3' = 0·6124, interactions from these 

(i) The fractional change inEG-for a given change and further neighbours should be attractive. In 
in parameter and given potential is effectively the terms of energy, calculations of E(r j ) for i = 1, ... , 
same for each structure. This can be shown to be . 5 show that, with potentials appropriate to ideal 
rigorously true for Mie functions and the maxi- crystals, the largest energy is associated with the 
mum variation for Morse functions.is 0·003 per nearest-neighb.our intyraction for a > 5·1 or 
cent, at a = 6. . ., . 3m+tz > 29, with the second-neighbour interac-

(ii) As is to be expected from the asymmetry of tion for 5·1 > a > 3·3 or 3m+n < 29, and with 
the potential functions, the changes for com pres- the third neighbour interaction for a < 3·3 . The 
sion exceed those for expansion. " '. _ limit of 3·3 is ins~nsitive to changes in parameter 

(iii) For potentials produci?g cO!llparable values but, as can be seen from Fig. 4(b), the limit at 
of EG , the Mie potentials give a greater variation 5·1 is sensitive to such changes, decreasing to 
with parameter than do the Morse potentials. about 4·6 for 2·5 per cent lattice expansion. In 

For particular interactio!,1s, it is clear on phys.ical summary, it appears that for most potentials and 
grounds that minimizing the" laItlce energy must most parameter values, the largest energy is in fact 
lead to an r 1 * less than r 0' i.e. to a repulsive force associated with a second-neighbour interaction. 
between nearest-neighbours in the unstrained This of course follows also from Table 1 since 
crystal. Any compression .ob~iously increases this rl/rO near 0·87 implies that the second neighbours 
repulsion while Table 1 shows that, after 2 per are separated by about ro, where the interaction 
cent expansion, the force .is still repulsive on thi~energy approaches its maximum value of Eo . For 
model for most potentials, th~ ~.xceptions being body-centred cubic crystals, the region with 

, those few for which r1*7ro-> 0·~_8. : i\(Z < 3·5 which may be appropriate for the alkali 
For second-neighbour interactions, whose signi- metals (Table 2) shows a further interesting feature. 

ficance has been discussed in some detail by For these relatively fiat potentials (see Fig. 1), the 
DRECHSLER and LIEPACK,(13) the force will be nearest-neighbour interaction becomes of opposite 
attractive so long as sign to the other interactions [Fig. 4(b)] and 

{ 

0·7071 for face-centred cubic 
crystals, 

0·8660 for body-centred cubic 
crystals. . 

For face-centred cubic crystals, Table 1 shows 
that this limit is attained only for Morse potentials 

9 

may be of considerable magnitude. At this 
stage, as pointed out above, the effect of third 
neighbours is very significant, particularly in 
contributions to total lattice energy smce 
Ml : M2 : M3 = 8 : 6 : 12. 

The considerations above point out the con
siderable errors which can be introduced by a 
theory based on nearest-neighbour interactions 
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FIG. 3. Interaction energy as a functien o.f lattice para
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petential ef (3) a = 4 and S· S, in a face-centred cubic 
crystal, and (b) a = 3·S, 4, and S, in a bedy-centred 
cubic crystal. The broken lines show a fraction ef the 
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FIG. 4. Variation with lattice parameter ef E(r,)/E(r2) 
for various l\1orse potentials in (a) a face-centred cubic 

crystal and (b) a body-centred cubic crystal. 
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FIG. 5. Variations with lattice parameter of various con
tributions to Eo in (a) a face-centred cubie crystal for a 
Morse poten tial of a = 3 ·89 nnd (b) a body-centrt'd 
cuhic crystal for" Morsc potcntial of a = 4·28; according 
to (3) these va lues are appropriate to Cu and \V. The 
number of atoms in each shell of neighbours is give n in 

brackets. 
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only, particularly for body-centred cubic crystals. 
One direct example of this has been pointed out 
by DRECHSLER and LIEPACK(13) in connection with 
the growth of a (110) face in a body-centred cubic 
. crystal. Here, a single adatom on top of such a face 
could locate itself on a site with three nearest
neighbours but instcad, since growth occurs on 
such faces, must be located on a site with two 
nearest and two second-nearest neighbours . This 
is consistent with detailed calculations with pair
'wise potentials which show that the latter site has a 
lower energy. 

An interesting demonstration of the effects of 
distant neighbours has been produced by con
structing ball-and-spring models of body-centred 
and face-centred cubic crystals. (11) Conventional 
models of this type use springs only betwecn 
nearest neighbours and since these are made 
identical they are all in equilibrium for an un
strained crystal. However, the new models use 
springs between atoms up to third-neighbour 
separation with spring constants adjusted to fit 
particular interaction potentials. In these, of course, 
the nearest-neighbour springs are always in com
pression and the model gives notably different 
results from the conventional one when used to 
study the stability of structures, their elastic pro
perties or the positions of surface atoms relative 
to their ideal lattice positions. 
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