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Abstract—The total lattice energy of face-centred and body-centred cubic crystals has been cal-
culated on the assumption of a pair-wise interaction potential, for a variety of such potentials.
These were either of Morse or Mie (Lennard—Jones) type, with the parameters adjusted to minimize
the total lattice energy for an ideal unstrained crystal at 0°K. The same potentials were used to
compute the variation in lattice energy when the lattice is allowed to expand or contract by up to
2-5 per cent. The relative contributions of different interactions to the total energy are given. For
face-centred cubic crystals, most potentials predict a major contribution from nearest-neighbour
interactions, although the contributions of second and higher neighbours are still significant. For
body-centred cubic crystals, the dominant contribution usually comes from the second neighbour
interactions. Some typical variations in these contributions with changes in lattice parameter are

given.

1. INTRODUCTION
IN THIS paper, we assume that the total lattice
energy (cohesive energy) of a crystal can be cal-
culated as the sum of pair-wise interactions be-
tween all atoms. Various forms are considered for
the interaction potential function, in all of which
the parameters have been adjusted to minimize the
lattice energy for an ideal unstrained crystal at
0°K. The lattice energy is then calculated for
body-centred and face-centred cubic crystals, first
for a lattice parameter corresponding to this
minimum energy and then also for parameters
deviating from this value by a few per cent. Such
changes in lattice energy may be expected if the
crystal is at higher temperatures or under hydro-
static pressure. Clearly any vibrational contribu-
tion to the lattice energy is not taken into account
in this calculation. Corresponding calculations of

* Work performed during an extended stay of M.D.
at the Division of Tribophysics.

surface energy are discussed in the following
paper.®

The calculation of energies by summing pair-
wise interactions has been used previously by
many authors,®® despite the recognition that
many-body interactions may make a significant
contribution to the total energy.® The attractions
of the method are that it is mathematically tract-
able and that it does appear to provide a good
approximation in many cases. The pair-wise
potential itself can be chosen either as a “real”
potential derived from quantum-mechanical cal-
culations or as a “fictitious”” potential® of simple
mathematical form and containing one or more
adjustable parameters. The second approach is
more in keeping with the philosophy of the method
and may be expected to give a better approximation
when the parameters are chosen to fit some specific
experimental data.

As discussed in detail in Section 2, we have re-
stricted our calculations to Morse and Mie
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(Lennard—Jones) potentials without any truncation
of the potential. Truncation, which corresponds to
considering only, say, the first three or four shells
of neighbours, involves an extra assumption that
is unnccessary when high-speed computers are
available and highly undesirable when more than

one crystal structure is being considered for the

same potential. Thus our calculations give precise
results for ideal crystals interacting with potentials
of the precise form given in equations (2) or (3).

We considered using also oscillatory potentials
such as have been discussed recently,® =8 but did
not pursue this investigation for the following
reasons:

(i) The only explicit potentials available are
those of Jounson, HutcHinsoN and MarcH,™
and since these involve a number of parameters
derived specifically for each metal, generalizations
become very difficult.

(ii) In some associated calculations on surface
energy,® out of the seven potentials available for
cubic metals, one was divergent, one gave negative
values of surface energy and a third gave a degree of
anisotropy of more than 3, which is very much
greater than that found by any other calculation or
experiment.

2. METHOD OF CALCULATION
If the interaction energy of two atoms at a dis-
tance, r, is given by E(r), then, for a perfect infinite
crystal, the total lattice energy per atom is given by

Eg =1 2 ME(r), O]
1

where r; is an interatomic distance, M; is the
number of neighbours of a given atom at this
distance, and the sum extends over all possible 7.
The method of calculation is therefore simply to
list for each structure the possible values of r; and
their associated multiplicities M;, and then
evaluate the lattice sum for particular potential
functions E(r). This corresponds to rewriting
equation (1) in the form

E; = Z E‘s s (2)

where

ES = }ME(r,) )

" represents the contribution to the lattice energy
from the #-th shell of neighbours.
The potentials considered were either Morse
potentials of the form

E(r)|Ey = [1—exp{—a(r—ry)[ro}?—1, (4)
or Mie (Lennard—Jones) potentials of the form
E(r)[E o= {n(ro[r)" —m(ro[r)"}/(m—n), (5)

where, in all potentials, E, corresponds to the
maximum interaction energy which occurs at a
separation 7.

Calculations were made for various values of the
Morse constant a between 3 and 6, while for the
Mie functions the attractive exponent m varied
from 4-5 to 9 and the repulsive exponent 2
(always greater than 2) ranged from 6 to 14. The
scaling factors E, were left arbitrary since only
relative energy values are considered but the 7,
values were adjusted, as described below, to
produce a minimum Eg for given a or (m, n).
Figure 1 shows some Morse functions, while some
typical Mie functions are plotted in the following
paper (1) in comparison with a Morse function
with a = 4.

All summations with Morse potentials were
carried through for the first 300 different values of
7, i.e. for the first 300 shells of neighbours. This
corresponds to considering all interactions out to
17-18 times r;, and ensured that all energy values
were correct to at least 8 significant figures. For
Mie potentials, the initial summations were carried
through for 500 shells of neighbours and the
effects of more distant interactions taken into
account by means of an integral approximation so
that the overall accuracy should be comparable to
that for the Morse potentials.

(2) Relation between the lattice parameter and 7,

From equations (4) and (5) it can be seen that
distances enter only through the dimensionless
variable (r/r,), while distances in the crystal are
available in terms of the lattice parameter or of the
nearest-neighbour distance, 7;. Thus, in order to
calculate the sums, the ratio 7;/r, must be specified
so that we can write

r[rg = (r[ry)-(ry/ro)- (6)

Then, for the interatomic distances 7;, the ratios
b, = ry[r, are fixed and known for a particular
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Fic. 1. Morse functions for various values of the Morse constant a.

lattice, e.g. for the body-centred cubic lattice,
b, = 1, by, = 2/4/3, by = 4/(8/3), etc., and r/r, is
now determinate.

In this notation, the lattice energy with a Mie
potential is

E,
Eg = '2_{”(’0/ r1)"S(m) — m(ro[ry)"*S(n)} | (m—n),
)

where
S@) = Z Mp,~1. (8)
-

Then, minimum Ej is easily shown to occur for
r; = r*, where

(ro/r*) = {S(m)[S(mP™ =™ . (9)

The lattice sums S(j) have been -ealculated by
Jones and IngHAMY® for all integral j from 4 to 30
and appear in their Table 1 as B, for the body-
centred cubic and C; for the face-centred cubic
lattice. Since we wished to use some half-integral
exponents we have recalculated S(j) for all integral
and half-integral values from 3-5 to 20. Values of
(ro/ry*) are given in Table 1 for various values of
(m, n).

For the Morse potentials, a similar procedure
can be followed but (ry/r;*) cannot be evaluated
in terms of simple lattice sums and a numerical
minimization procedure is necessary. The values of

(ro/ry*) appropriate to various Morse constants a
are also given in Table 1.

It may be noted here that GiriraLco and
We1zer® have considered a range of materials and
used experimental values of sublimation energy,
lattice parameter, and compressibility to deduce
the values of E,, @, and r, appropriate to each.
Table 2 lists these as some of our calculations have
been carried through with them. Although they
express the Morse potential in a different form
their values correspond to the same minimization
criterion that we have used. Other workers have
used a similar approach to deduce the (m, 7) values
of Mie potentials appropriate to different
materials.® Some discussion of this appears in
Section 4(b) of the following paper.®

(b) Variation of the lattice parameter

In studying the effect of temperature or pres-
sure on the lattice energy, we assume that the
nearest-neighbour distance in a perfect unstrained
crystal at 0°K is »,* and that the only effect of
temperature or pressure is to vary the r; by a few
per cent from this value. The sums such as those
in equation (5) can then be evaluated to show the
variation in lattice energy with lattice parameter.
This has been carried out for r, /ry* deviating from
unity by up to +2-5 per cent for the Mie potentials
and up to +5 per cent for the Morsc potentials.

In order that the variation in E, expressed here
in terms of a variation in lattice parameter, can be
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Table 1. Ratio of the nearest-neighbour distance, ri*, for minimum lattice energy to the distance
of the minimum in the potential function, ry. For ratios of lattice parameter to 70, the values given
must be multiplied by A/2 for face-centred cubic and 2//3 for body-centred cubic crystals

Face-centred cubic

Morse a 3 35 4 45 5 6
r1*[ro 0:6346 0-8266 0-9014 0-9395 0-9612 0-9825
Mie m 45 5 6 7 8 9
n= 6 0-8140 0-8519
7 0-8564 0-8873 09243
8 0-8844 0-9104 0-9411 0-9583
10 0-9182 0-9379 0-9607 0-9731 0-9806 0-9855
12 0-9375 0-9532 0-9712 0-9809 0-9866 0-9903
14 0-9497 0-9628 0-9776 0-9855 0-9901 0-9930
Body-centred cubic
Morse a 3 35 4 4-5 5 6
r1¥[ro 0:6167 0-8035 0-8767 0-9147 0-9367 0-9601
Mie m 45 5 6 7 8 9
n= 6 0-7932 0-8303
vy 0-8351 0-8655 0-9021
8 0-8629 0-8886 0-9193 0-9368
10 0-8974 0-9169 0-9399 0-9529 0-9611 0-9666
12 0-9178 0-9335 0-9519 0-9621 0-9686 0-9730
14 0-9312 0-9444 0-9597 0-9682 0-9736 0:9772

Table 3. Temperatures and pressure necessary to change lattice parameters by particular

amounts1:12)

Temperature (°K) at which
the lattice parameter exceeds

Pressure (10° kg/cm?) which changes
the lattice parameter at room

Material 0°K value by temperature by
1 per cent 2 per cent —0-5percent —1percent ~—2 percent
Na 180 350 1-0 2:0 42
Al . 450 800 115 25 57
Cu 650 1250 235 53 ~200
w 1950 3250 70 - -

considered in terms of temperature or pressure, expected for 1 per cent and 2 per cent change in
Table 3 gives the relevant experimental data for a  parameter.

few metals.

3. RESULTS

Since E has been minimized at r,*, the changes
in the total lattice energy are all small but much
greater changes occur in the energies associated

Table 4 shows the calculated lattice energy for with the interactions of particular atoms or groups
various potentials together with the variations of atoms. Thus, Fig. 2 shows, for a Morse a = 4

DISTRIBUTION OF THE LATTICE ENERGY IN CUBIC CRYSTALS

Table 2. Constants in the Morse potential as deduced by GiriraLCcO and WEIZER.® The expressions in brackets use the symbols from (3)

Face-centred cubic crystals

Sr

Ca

Ag Ni

Pb

Metal

0:1623 0-1513
3-680 3-680
0-8602 0-8602

0-2703

3-788
0-8762

0-3429
3-894
0-8898

0-4205

3:947
0-8958

0-3323

4265
0-9244

0-2348

4:419
0-9348

In B)
r1*[ro (= 4/2aa,/In B)

Ey(=D), in eV

Body-centred cubic crystals

Cs Rb

Na

Ba

Fe

Cr

Mo

Metal

0-04644

3-098
06743

0-04485
3-142
0:6947

0-06334
3-148
0:6972

0-05424
3-170
07065

0-1416

3-530
0-8096

0-4174

3:951
0-8716

0-9906

4-279
09006

0-4414
4330
0-9041
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Table 4. Lattice energies, Eg for different potentzals and the dfﬁ‘erences caused by small variations
of the lattice parameter from its value for minimum Eg. Since Eg is itself negative, the quoted
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F1G. 2. Interaction energy (full line) between, and force
exerted on (broken line) first to fourth nearest neighbours
in a body-centred cubic crystal with a Morse a = 4
potential, The changes caused by a 2 per cent lattice
expansion or contraction are also shown.

increases are in fact decreases in the absolute value of Eg

Per cent increase in E; for lattice

—EG|E, expansion of contraction of
Potential f.c.c b.c.c. 1 percent 2 percent 1percent 2 percent
Morse: a =
3 22-802 22-806 0-04 0-17 0-05 0-19
3-25 15-895 15-881 0-07 0-27 0-07 0-30
355 12-819 12-788 0:09 0-35 0-10 0-40
375 11-049 11-000 0-11 0-44 0-12 0-50
4 9-900 9-830 013 0-52 0-15 0-60
425 9:097 9-007 0-16 060 0-17 071
4-5 8-509 8-397 0-18 0-69 0-20 0-82
475 8-:064 7-921 0:20 0-78 0-22 0-93
5 7-718 7-555 0-23 0-87 0-25 1-05
5-25 7-443 7-253 0-25 0-96 0-28 118
5-5 7-222 7-003 0-28 1-06 0-31 1.31
575 7-041 6793 0-31 1-15 0-34 1-45
6 6892 6-612 0-33 1-26 0-:38 1:59
Mie: (m, n) =
(4+5, 6) 24-840 24-609 013 0-49 0-14 0-59
(4-5,14) 12-410 11-951 0-29 1-10 0-34 1-46
(5,7 15-423 15198 0-17 0-63 0-18 0-77
(5, 8) 13-567 13-319 0-19 0-72 0-21 0-89
(6,12) 8-610 8-237 0-34 1-26 0-39 1-66
9, 14) 6656 6-089 0-58 213 0-69 301
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potential in a body-centred cubic crystal, how the
energics of interaction between first to fourth
nearest-neighbours are related for 7r,/r;* = 0:98,
1:0, and 1-02. The derivative of this encrgy, which
gives the force on one atom exerted by the appro-
priate neighbours, is also plotted here. More
details of these energies are given in Fig. 3 for a
variety of Morse constants, while Fig. 4 shows the
variation with parameter of E(rl)/E(rz) Figure 5
shows ES (i =1,
parameter for two diﬂerent Morse constants.

4. DISCUSSION OF THE RESULTS )

Although the variation of E; with lattice para-
meter, as shown in Table 4, is in fact small, the
following generalizations are of interest.

(i) The fractionalchange inE for a givenchange
in parameter and given potential is effectively the
same for each structure. This can be shown to be
rigorously true for Mie functions and the maxi-
mum variation for Morse functlons is 0:003 per
cent, at a = 6.

(ii) As is to be expected from the asymmetry of
the potential functions, the changes for compres-
sion exceed those for expansion.

(iii) For potentials producing comparable values
of E;, the Mie potentials give a greater variation
with parameter than do the Morse potentials.

For partlcular interactions, it is clear on physical
grounds that minimizing the lattice energy must
lead to an 7, * less than 7, i.e. to a repulsive force
between nearest-neighbours in the unstrained
crystal. Any compression obviously increases this
repulsion while Table 1 shows that, after 2 per
cent expansion, the force is still repulsive on this
model for most potentials, the exceptions being

" those few for which r,*/ro- > 0-98,

For second-neighbour interactions, whose signi-
ficance has been discussed in some detail by
DrecusLErR and Liepack,® the force will be
attractive so long as Sa

0-7071 for face-centred cubic
crystals,
ryfro > 1/b; =
0-8660 for body-centred cublc
crystals.

For face-centred cubic crystals, Table 1 shows

that this limit is attained only for Morse potentials

9

, 4) as functions of the

with @ < 3-1. Thus even for quite large com-
pressions, second-neighbour interactions should
remain attractive. In terms of energy contributions,
Fig. 4(a) shows that a nearest-neighbour interac-
tion exceeds that of a second neighbour for
a > 3-8 and this effect 'is reinforced in the con-
tributions to lattice energy since M,;/M, = 2 [see
Fig. 5(a)]. For Mie potentials, calculations show
that E(r,)/E(r,) > 1 whenever 2m+n > 17 and
that E,%/E,* > 1 whenever 2m-+n > 16.

“In body-centred cubic crystals, a very different
situation prevails. Table 1 shows that for Morse
potentials with a < 4, the second-neighbour

interactions will be repulsive and this is also

true for some of the Mie potentials. Since
third neighbours become repulsive only for
rifro < 1/bg = 0-6124, interactions from these
and further neighbours should be attractive. In
terms of energy, calculations of E(r;) fori = 1, ...,
5 show that, with potentials appropriate to ideal
crystals, the largest energy is associated with the
nearest-neighbour interaction for & > 51 or
3m+n > 29, with the second-neighbour interac-
tion for 51 > a > 3:3 or 3m+n < 29, and with
the third neighbour interaction for a < 3-3. The

_ limit of 3-3 is insensitive to changes in parameter

but, as can be seen from Fig. 4(b), the limit at
5-1 is sensitive to such changes, decreasmg to
about 46 for 2-5 per cent lattice expansion. In
summary, it appears that for most potentials and
_most parameter values, the largest energy is in fact
associated with a second-neighbour interaction.
This of course follows also from Table 1 since
ry[ro near 0-87 implies that the second neighbours
are separated by about r,, where the interaction
energy approaches its maximum value of E,. For
body-centred cubic crystals, the region with

“a < 3-5 which may be appropriate for the alkali

metals (Table 2) shows a further interesting feature.
For these relatively flat potentials (see Fig. 1), the
nearest-neighbour interaction becomes of opposite
sign to the other interactions [Fig. 4(b)] and
may be of considerable magnitude. At this
stage, as pointed out above, the effect of third
neighbours is very significant, particularly in
contributions to total lattice energy since
M, :M;:M;=28:6:12.

The considerations above point out the con-
siderable errors which can be introduced by a
theory based on nearest-neighbour interactions

e =N
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only, particularly for body-centred cubic crystals.
One direct example of this has been pointed out
by DrecHsLER and Liepack® in connection with
the growth of a (110) face in a body-centred cubic
crystal. Here, a single adatom on top of such a face
could locate itself on a site with three ncarest-
neighbours but instead, since growth occurs on
such faces, must be located on a site with two
nearest and two second-nearest neighbours. This
is consistent with detailed calculations with pair-
wise potentials which show that the latter sitc has a
lower energy.

An interesting demonstration of the effects of
distant neighbours has been produced by con-
structing ball-and-spring models of body-centred
and face-centred cubic crystals.’ Conventional
models of this type use springs only between
nearest neighbours and since these are made
identical they are all in equilibrium for an un-
strained crystal. However, the new models use
springs between atoms up to third-neighbour
separation with spring constants adjusted to fit
particular interaction potentials. In these, of course,
the nearest-neighbour springs are always in com-
pression and the model gives notably different
results from the conventional one when used to
study the stability of structures, their elastic pro-
perties or the positions of surface atoms relative
to their ideal lattice positions.
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